Lesson Plans & Activities
Exploring the Arctic
This is the first activity of a three-part curriculum about Arctic climate; the activities may be used independently or in sequence.
This activity introduces students to the Arctic and Arctic climate. Through a virtual exploration of the geography of the Arctic students become familiar with the region. They are then introduced to meteorological parameters that Arctic research teams use.Do you really want to visit the Arctic?
This is the second activity of a three-part curriculum about Arctic climate; the activities may be used independently or in sequence.
This jigsaw activity introduces students with Arctic weather data using a role-playing activity that has students read and interpret graphs while considering the optimal time to plan a research mission to the Arctic.Exploring Arctic Climate Data
This is the third activity of a three-part curriculum about Arctic climate; the activities may be used independently or in sequence.
In this final activity, students use authentic Arctic climate data to explore albedo and its relationship to seasonal snowmelt as a self-reinforcing feedback mechanism, which is then applied to large scale global climate change.What’s Up With The Rising Temperatures in Colorado Cities?
This is the first lesson in the Climate Resiliency Education Middle School Climate Unit.
This lesson introduces why certain cities in Colorado are getting hotter using a video by the Denver Post that describes the pattern.What Makes Cities Hotter?
This is the second lesson in the Climate Resiliency Education Middle School Climate Unit.
In this lesson, students explore reasons why temperatures in particular Colorado cities are rising.Why Are Growing Cities Hotter?
This is the third lesson in the Climate Resiliency Education Middle School Climate Unit.
This lesson has students explore what land use changes are happening and how changes in surface color affects temperatures in cities.Are Other Parts of the World Getting Hotter?
This is the fourth lesson in the Climate Resiliency Education Middle School Climate Unit.
In this lesson, students investigate whether other parts of the world are changing and getting hotter just like Colorado.What Was Earth’s Temperature Like in the Past?
This is the fifth lesson in the Climate Resiliency Education Middle School Climate Unit.
Students examine what the world’s temperature trend was in the past and whether temperatures have changed recently.How Does Human Activity Affect the Warming Temperatures on Earth?
This is the sixth lesson in the Climate Resiliency Education Middle School Climate Unit.
This lesson explores whether human activities release greenhouse gases, like CO2, and whether these activities can cause temperatures on Earth to increase.How Do Cars Impact CO2 in the Atmosphere?
This is the seventh lesson in the Climate Resiliency Education Middle School Climate Unit.
During this lesson, students explore how fossil fuel burning in cars contributes CO2 to the atmosphere.How Does an Increase in CO2 Cause an Increase in Temperature?
This is the eighth and final lesson in the Climate Resiliency Education Middle School Climate Unit.
In this lesson, students learn how more CO2 in the atmosphere causes global warming.How Can We Decrease Our Impact on the Earth’s Climate at our School?
This is the first lesson in the Climate Resiliency Education Design Challenge Unit which was designed to follow the middle or high school Climate Resiliency Education units.
In this design challenge lesson students explore the Denver Public School District’s solid waste plan and discuss how their school can save or decrease emissions by reducing solid waste at our school.How Does Our School Food System Create Greenhouse Gas Emissions?
This is the second lesson in the Climate Resiliency Education Design Challenge Unit which is meant to follow the middle or high school Climate Resiliency Education units.
In this design challenge lesson, students examine their school food system and develop an investigation about food waste in order to know what should change.How Can We Understand Waste and Emissions in Our School's Food System?
This is the third lesson in the Climate Resiliency Education Design Challenge Unit which is meant to follow the middle or high school Climate Resiliency Education units.
This lesson outlines for students how to design and carry out an investigation to audit their school’s food waste system.How Can We Reduce Emissions Associated with Food Waste in Our School?
This is the fourth lesson in the Climate Resiliency Education Design Challenge Unit which is meant to follow the middle or high school Climate Resiliency Education units.
In this activity students utilize the data that is collected and propose solutions to mitigate food waste in their school.How Can We Present Solutions for Food Waste and Emissions at School?
This is the fifth lesson in the Climate Resiliency Education Design Challenge Unit which is meant to follow the middle or high school Climate Resiliency Education units.
This lesson provides guidance for students to create and practice a presentation about their design challenge results that they developed in the previous lessons and how to present it to the school administration.Creating a Compass from a Magnet
Project EXTREMES lessons were intended to stand alone, but this lesson can be included in a unit on the Earth’s interior.
In this lesson, students create a compass and apply their reasoning about magnetism to how compasses work to help us navigate around the globe while utilizing the Earth’s magnetic field.
Exploring the New and Old Arctic
This unit consists of 6 lessons, each tied to NGSS nature of science understandings
In this MS/HS unit, students compare and contrast Arctic expeditions of the past (1893-1896 Fram expedition) and the present (2019-2020 MOSAiC expedition) to prepare for the Arctic of the future.Arctic Feedbacks: Not All Warming Is Equal
This storyline unit consists of 10 lessons, each tied to NGSS Earth's systems standards
In this MS/HS unit, students engage with 360° virtual field trips, authentic Arctic datasets, and app-based labs to construct models and explanations for the unit driving question, "Why might the Arctic be warming four times as fast as the rest of the world?"Photosynthesis, Respiration, and the Short-Term Carbon Cycle
Project EXTREMES lessons were written to be stand alone lessons but can be incorporated into a larger unit.
This lesson is focused on the short-term cycling of carbon and is designed to put the processes of photosynthesis and respiration within a global perspective.
Energy Pyramids and Food Webs
Project EXTREMES lessons were written to be stand alone lessons but can be incorporated into a larger unit.
In this lesson, students identify the sun as the source of energy and understand how energy flows through an ecosystem.
A Changing Arctic Ecosystem
This storyline unit consists of 8 lessons, each tied to NGSS life science standards
The Arctic is warming more rapidly than anywhere else on Earth. One consequence of a warming Arctic is a dramatic decline in sea ice, an important habitat for many Arctic plants and animals. In this unit students will engage with 360° virtual reality tours, hands-on labs, and authentic Arctic datasets as they gather evidence to construct explanatory models for the unit driving question, "How might the decline in sea ice affect Arctic organisms large and small?"Data Puzzle: On a Budget
This data puzzle is a stand-alone lesson that is part of a larger collection of data puzzles.
The Arctic is currently warming at a rate faster than the global average, a phenomenon known as Arctic amplification. In this Data Puzzle, students analyze authentic Arctic datasets to construct explanatory models for the following question, "Why might the Arctic be warming faster than other places on Earth?"
Data Puzzle: Balancing Act
This data puzzle is a stand-alone lesson that is part of a larger collection of data puzzles.
Since the early 2000s, the Greenland Ice Sheet’s mass balance has been consistently negative, meaning more mass is being lost than gained. But this change in mass balance hasn’t always happened at the same rate. What could account for observed changes to the amount of ice in the Greenland Ice Sheet in recent decades?

Data Puzzle: To Reflect or Not to Reflect
This data puzzle is a stand-alone lesson that is part of a larger collection of data puzzles.
The color of Earth's surface determines how much of the Sun's energy is reflected or absorbed, where lighter-colored surfaces are more reflective (higher albedo). In this Data Puzzle, students analyze authentic Arctic data to construct explanatory models for the following question, "How might the Arctic’s albedo be affected by the observed decline in sea ice?"
Data Puzzle: It's All Connected
This data puzzle is a stand-alone lesson that is part of a larger collection of data puzzles.
What makes the Arctic climate system so unique is the sea ice, which influences the Arctic climate in many ways. In this Data Puzzle, students analyze authentic Arctic data to construct explanatory models for the following question, "What effect, if any, do leads (cracks in the sea ice) have on the transfer of moisture between the Arctic Ocean and atmosphere?"
Data Puzzle: Wind Farms of the Future
This data puzzle is a stand-alone lesson that is part of a larger collection of data puzzles.
Transitioning from fossil fuels to clean, renewable energy sources like wind is essential if the US is to reduce its carbon emissions. But where should new wind farms be constructed? In this Data Puzzle, students analyze surface roughness and wind speed data to construct an evidence-based explanation for the following question, "Where in the United States (lands and waters) should new wind turbines be constructed to generate the most energy?"
Shifting Winds
In this short unit, students investigate the question "Are wind patterns at the foot of the Rocky Mountains changing?" Students explore what causes wind and look at recent wind data. Students create a public-facing infographic to explain to the public if and how wind patterns are changing.Data Puzzle: Not All Warming is Equal
This data puzzle is a stand-alone lesson that is part of a larger collection of data puzzles.
The dramatic increase in atmospheric carbon dioxide has caused global temperatures to rise by more than 1.1°C (~2°F), but not all warming is equal. In this Data Puzzle, students analyze temperature and atmospheric carbon dioxide datasets to construct explanatory models for the following question, "Do the places on Earth where temperatures are increasing the most also have the greatest increases in atmospheric carbon dioxide?"
Data Puzzle: Windstorms on the Front Range
Although strong windstorms are a common weather event at the foot of the Rocky Mountains, a record-breaking windy spring soon after the Marshall Fire disaster had the public feeling on-edge. In this Data Puzzle, students analyze data on the number of windstorms and the number of red flag warnings to investigate the question, “Is it getting windier on the Front Range as the climate warms?”
We are Water Kahoot Trivia - Beginner Level
Answer some fun trivia questions about the science of water and the geography of the Four Corners Region! Pick a level where you want to start and see how far you can go!
Challenge your students with beginner level trivia from We are Water about the science of water and the geography of the Four Corners Region.
We are Water Kahoot Trivia - Intermediate Level
Answer some fun trivia questions about the science of water and the geography of the Four Corners Region! Pick a level where you want to start and see how far you can go!
Challenge your students with intermediate level trivia from We are Water about the science of water and the geography of the Four Corners Region.
We are Water Kahoot Trivia - Advanced Level
Answer some fun trivia questions about the science of water and the geography of the Four Corners Region! Pick a level where you want to start and see how far you can go!
Challenge your students with advanced level trivia from We are Water about the science of water and the geography of the Four Corners Region.
Seasons and Light in the Arctic
Seasons and Light in the Arctic is one of four activities in the The Drifting North Polar Planetarium Experience that invites students to explore what it was like to participate in the MOSAiC expedition to the North Pole.
In this activity, student's will explore why we have seasons and changing daylight throughout the year by graphing different daylight hours around the world. Learning will be guided with the driving question: How do we understand the Arctic light and seasons?Sea Ice, The Character
Sea Ice, The Character is one of four activities in the The Drifting North Polar Planetarium Experience that invites students to explore what it was like to participate in the MOSAiC expedition to the North Pole.
In this activity, student's will compare and contrast the different structures of freshwater ice and seawater ice with a hands-on lab. Learning about what makes sea ice so unique in the Arctic will be guided by the driving questions: How does saltwater sea ice differ from freshwater ice? What is sea ice like in the Arctic? and Why is sea ice important in the Arctic?